Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Pavel A. Petrov,* Natalia V. Kuratieva, Dmitry Yu. Naumov and Sergei N. Konchenko

Institute of Inorganic Chemistry, SB Russian Academy of Sciences, Akad. Lavrentiev prospekt 3, Novosibirsk, 630090 Russia

Correspondence e-mail: panah@ngs.ru

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.031$
$w R$ factor $=0.082$
Data-to-parameter ratio $=16.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetraethylammonium bis(benzene-1,2-dithiolato)-(2-disulfanylbenzenethiolato)niobate

The title compound, $\left(\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}\right)\left[\mathrm{Nb}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{3}\right)\right]$, is the major product of the reaction of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{4}\left[\mathrm{Nb}_{2} \mathrm{~S}_{4}(\mathrm{NCS})_{8}\right]$ and disodium benzene-1,2-dithiolate. The coordination environment of the Nb atom contains seven S atoms, viz. four S atoms from two benzene-1,2-dithiolate ligands and three S atoms from 2-disulfanylbenzenethiolate. The $\mathrm{Nb}-\mathrm{S}$ distances are in the range 2.4391 (6)-2.5932 (7) \AA.

Comment

A ligand exchange in $\left[\mathrm{Nb}_{2} \mathrm{~S}_{4}(\mathrm{NCS})_{8}\right]^{4-}$ was shown to be a useful approach to the synthesis of $\mathrm{Nb}_{2} \mathrm{~S}_{4} L_{4}$ complexes, where L is a bidentate ligand such as dialkyldithiocarbamate, dialkyldithiophosphate or alkyldithiocarbonate (Sokolov et al., 1994, 1996; Virovets et al., 1993). However, in the case of $L=$ benzene-1,2-dithiolate, the ligand exchange was found to be accomplished by $\left[\mathrm{Nb}_{2} \mathrm{~S}_{4}(\mathrm{NCS})_{8}\right]^{4-}$ cluster decomposition to yield several products, among which the title Nb complex, (I), is the major one. The complex anion contains two benzene-1,2-dithiolates and one 2-disulfanylbenzenethiolate coordinated to the Nb atom (Fig. 1). 2-Disulfanylbenzenethiolate may be described as an η^{3}-ligand, with one $\mathrm{Nb}-\mathrm{S}$ bond [2.593 (1) A] longer than the other two [2.448 (1) and 2.439 (1) \AA]. An $\mathrm{S}_{3} \mathrm{C}_{6} \mathrm{H}_{4}{ }^{2-}$ ligand formation may indicate sulfur elimination from $\mathrm{S}_{2}{ }^{2-}$ as one of the intermediate steps.

(I)

Experimental

A mixture of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{4}\left[\mathrm{Nb}_{2} \mathrm{~S}_{4}(\mathrm{NCS})_{8}\right](200 \mathrm{mg}, 0.154 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ ($115 \mathrm{mg}, 0.618 \mathrm{mmol}$) was refluxed in dry acetonitrile $(15 \mathrm{ml})$ for 3 h . The solvent was removed in vacuo; the residue was extracted with 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified on a chromatography column $\left(1 \times 10 \mathrm{~cm}, \mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The first brown fraction was collected. Crystals were grown by evaporation of a solution of (I) in a CHCl_{3}-heptane mixture at room temperature (yield $\mathrm{ca} 5 \%$).

Received 5 April 2005 Accepted 22 April 2005 Online 21 May 2005

Crystal data

$\left(\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}\right)\left[\mathrm{Nb}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{3}\right)\right]$
$M_{r}=675.86$
Monoclinic, $P 2_{1} / c$
$a=10.8255$ (3) \AA
$b=17.9119$ (5) A
$c=15.0647(4) \AA$
$\beta=90.423$ (1) ${ }^{\circ}$
$V=2921.05(14) \AA^{3}$
$Z=4$
Data collection
Bruker-Nonius X8APEX CCD area-detector diffractometer φ scans
Absorption correction: multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}=0.768, T_{\text {max }}=0.873$
17313 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.082$
$S=1.04$
5338 reflections
320 parameters
H -atom parameters constrained
$D_{x}=1.537 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6454
reflections
$\theta=2.6-30.7^{\circ}$
$\mu=0.93 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Prism, black
$0.30 \times 0.20 \times 0.15 \mathrm{~mm}$

5338 independent reflections 4345 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=25.4^{\circ}$
$h=-12 \rightarrow 13$
$k=-21 \rightarrow 20$
$l=-18 \rightarrow 13$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0517 P)^{2}\right. \\
\quad+0.018 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=1.11 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}
\end{array}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Nb1-S11	$2.4522(6)$	Nb1-S31	$2.4479(6)$
Nb1-S12	$2.5331(6)$	Nb1-S32	$2.5932(7)$
Nb1-S21	$2.4688(6)$	Nb1-S33	$2.4391(6)$
Nb1-S22	$2.4748(6)$	S32-S33	$2.0561(9)$
			$93.80(2)$
S11-Nb1-S12	$79.38(2)$	S31-Nb1-S33	$48.11(2)$
S21-Nb1-S22	$79.18(2)$	S32-Nb1-S33	
S31-Nb1-S32	$80.36(2)$		

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$ and $U_{\text {iso }}=1.2-$ $1.5 U_{\text {eq }}$ (parent atom). Location of $\Delta \rho_{\text {max }}$?

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2004); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figure 1
View of the title compound, with 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

The authors are grateful to RFBR (grant No. 03-03-32374) for supporting this work.

References

Bruker (2004). APEX2 (Version 1.08), SAINT (Version 7.03), SADABS (Version 2.11) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
Sokolov, M. N., Fedorov, V. E., Tkachev, S. V. \& Fedin, V. P. (1996). Zh. Neorg. Khim. (Russ.), 41, 2059-2065.
Sokolov, M., Virovets, A., Nadolinnyi, V., Hegetschweiler, K., Fedin, V., Podberezskaya, N. \& Fedorov, V. (1994). Inorg. Chem. 33, 3503-3509.
Virovets, A. V., Podberezskaya, N. V., Sokolov, M. N., Korobkov, I. V., Fedin, V. P. \& Fedorov, V. E. (1993). Zh. Strukt. Khim. (Russ.), 34, 134-138.

