metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Pavel A. Petrov,* Natalia V. Kuratieva, Dmitry Yu. Naumov and Sergei N. Konchenko

Institute of Inorganic Chemistry, SB Russian Academy of Sciences, Akad. Lavrentiev prospekt 3, Novosibirsk, 630090 Russia

Correspondence e-mail: panah@ngs.ru

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.031 wR factor = 0.082Data-to-parameter ratio = 16.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetraethylammonium bis(benzene-1,2-dithiolato)-(2-disulfanylbenzenethiolato)niobate

Received 5 April 2005 Accepted 22 April 2005

Online 21 May 2005

The title compound, $(C_8H_{20}N)[Nb(C_6H_4S_2)_2(C_6H_4S_3)]$, is the major product of the reaction of $(Et_4N)_4[Nb_2S_4(NCS)_8]$ and disodium benzene-1,2-dithiolate. The coordination environment of the Nb atom contains seven S atoms, *viz*. four S atoms from two benzene-1,2-dithiolate ligands and three S atoms from 2-disulfanylbenzenethiolate. The Nb-S distances are in the range 2.4391 (6)–2.5932 (7) Å.

Comment

A ligand exchange in $[Nb_2S_4(NCS)_8]^{4-}$ was shown to be a useful approach to the synthesis of $Nb_2S_4L_4$ complexes, where *L* is a bidentate ligand such as dialkyldithiocarbamate, dialkyldithiophosphate or alkyldithiocarbonate (Sokolov *et al.*, 1994, 1996; Virovets *et al.*, 1993). However, in the case of *L* = benzene-1,2-dithiolate, the ligand exchange was found to be accomplished by $[Nb_2S_4(NCS)_8]^{4-}$ cluster decomposition to yield several products, among which the title Nb complex, (I), is the major one. The complex anion contains two benzene-1,2-dithiolates and one 2-disulfanylbenzenethiolate coordinated to the Nb atom (Fig. 1). 2-Disulfanylbenzenethiolate may be described as an η^3 -ligand, with one Nb–S bond [2.593 (1) Å] longer than the other two [2.448 (1) and 2.439 (1) Å]. An $S_3C_6H_4^{2-}$ ligand formation may indicate sulfur elimination from S_2^{2-} as one of the intermediate steps.

Experimental

A mixture of $(Et_4N)_4[Nb_2S_4(NCS)_8]$ (200 mg, 0.154 mmol) and $Na_2S_2C_6H_4$ (115 mg, 0.618 mmol) was refluxed in dry acetonitrile (15 ml) for 3 h. The solvent was removed *in vacuo*; the residue was extracted with 10 ml of CH_2Cl_2 and purified on a chromatography column (1 × 10 cm, SiO₂, CH₂Cl₂). The first brown fraction was collected. Crystals were grown by evaporation of a solution of (I) in a CHCl₃-heptane mixture at room temperature (yield *ca* 5%).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Crystal data

 $\begin{array}{l} (C_8H_{20}N)[Nb(C_6H_4S_2)_2(C_6H_4S_3)]\\ M_r = 675.86\\ Monoclinic, P2_1/c\\ a = 10.8255 (3) Å\\ b = 17.9119 (5) Å\\ c = 15.0647 (4) Å\\ \beta = 90.423 (1)^{\circ}\\ V = 2921.05 (14) Å^3\\ Z = 4 \end{array}$

Data collection

Bruker–Nonius X8APEX CCD
area-detector diffractometer
φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\min} = 0.768, \ T_{\max} = 0.873$
17 313 measured reflections

Refinement

,	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0517P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.031$	+ 0.018P]
$wR(F^2) = 0.082$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
5338 reflections	$\Delta \rho_{\rm max} = 1.11 \text{ e } \text{\AA}^{-3}$
320 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

 $D_x = 1.537 \text{ Mg m}^{-3}$

Cell parameters from 6454

 $0.30 \times 0.20 \times 0.15 \ \text{mm}$

5338 independent reflections

4345 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

 $\begin{array}{l} \theta = 2.6 - 30.7^{\circ} \\ \mu = 0.93 \ \mathrm{mm}^{-1} \end{array}$

T = 150 (2) K

Prism, black

 $R_{\rm int} = 0.031$

 $\theta_{\rm max} = 25.4^\circ$

 $h = -12 \rightarrow 13$

 $k = -21 \rightarrow 20$

 $l = -18 \rightarrow 13$

Table 1

Selected geometric parameters (Å, °).

Nb1-S11	2.4522 (6)	Nb1-S31	2.4479 (6)
Nb1-S12	2.5331 (6)	Nb1-S32	2.5932 (7)
Nb1-S21	2.4688 (6)	Nb1-S33	2.4391 (6)
Nb1-S22	2.4748 (6)	\$32-\$33	2.0561 (9)
\$11-Nb1-\$12	79.38 (2)	\$31-Nb1-\$33	93.80 (2)
S21-Nb1-S22	79.18 (2)	S32-Nb1-S33	48.11 (2)
S31-Nb1-S32	80.36 (2)		

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H = 0.95-0.98 Å and $U_{\rm iso} = 1.2-1.5U_{\rm eq}$ (parent atom). Location of $\Delta \rho_{\rm max}$?

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2004); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Figure 1

View of the title compound, with 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

The authors are grateful to RFBR (grant No. 03-03-32374) for supporting this work.

References

- Bruker (2004). APEX2 (Version 1.08), SAINT (Version 7.03), SADABS (Version 2.11) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sokolov, M. N., Fedorov, V. E., Tkachev, S. V. & Fedin, V. P. (1996). Zh. Neorg. Khim. (Russ.), 41, 2059–2065.
- Sokolov, M., Virovets, A., Nadolinnyi, V., Hegetschweiler, K., Fedin, V., Podberezskaya, N. & Fedorov, V. (1994). *Inorg. Chem.* **33**, 3503–3509.
- Virovets, A. V., Podberezskaya, N. V., Sokolov, M. N., Korobkov, I. V., Fedin, V. P. & Fedorov, V. E. (1993). *Zh. Strukt. Khim. (Russ.)*, **34**, 134–138.